
Multi-Agent Deep Reinforcement Learning and
GAN-Based Market Simulation for

Derivatives Pricing and Dynamic Hedging
by

Samson Qian
B.S. Data Science, University of California San Diego, 2021

Submitted to the MIT Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Finance

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© 2023 Samson Qian. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
MIT Sloan School of Management

January 20, 2023
Certified by. .

Leonid Kogan
Nippon Telegraph and Telephone Professor of Management

Thesis Supervisor

Accepted by .
Urmi Samadar

Assistant Dean, MIT Sloan Master of Finance Program
MIT Sloan School of Management

2

Multi-Agent Deep Reinforcement Learning and

GAN-Based Market Simulation for

Derivatives Pricing and Dynamic Hedging

by

Samson Qian

Submitted to the MIT Sloan School of Management
on January 20, 2023, in partial fulfillment of the

requirements for the degree of
Master of Finance

Abstract

Advancements in computing capabilities have enabled machine learning algorithms to
learn directly from large amounts of data. Deep reinforcement learning is a particu-
larly powerful method that uses agents to learn by interacting with an environment of
data. Although many traders and investment managers rely on traditional statistical
and stochastic methods to price assets and develop trading and hedging strategies,
deep reinforcement learning has proven to be an effective method to learn optimal
policies for pricing and hedging. Machine learning removes the need for various para-
metric assumptions about underlying market dynamics by learning directly from data.
This research examines the use of machine learning methods to develop a data-driven
method of derivatives pricing and dynamic hedging. Nevertheless, machine learning
methods like reinforcement learning require an abundance of data to learn. We explore
the implementation of a generative adversarial network-based approach to generate
realistic market data from past historical data. This data is used to train the rein-
forcement learning framework and evaluate its robustness. The results demonstrate
the efficacy of deep reinforcement learning methods to price derivatives and hedge
positions in the proposed systematic GAN-based market simulation framework.

Thesis Supervisor: Leonid Kogan
Title: Nippon Telegraph and Telephone Professor of Management

3

4

Acknowledgments

I am honored and grateful to have Professor Leonid Kogan as my research advisor.

Thank you, Professor Kogan, for all the guidance throughout the research process

and the great advice on the direction and focus of the study. Thank you for advising

both the theoretical and practical applications of my work.

I would like to thank my parents and friends for supporting me and fostering my

intellectual curiosity and passion to complete my Master of Finance degree and to

try to understand more about the complex financial markets. Thank you for always

pushing and motivating me to achieve more.

5

6

Contents

1 Introduction 13

1.1 Background of Derivatives Pricing Methods 13

1.2 Research Motivation . 14

1.2.1 Market Assumptions . 14

1.2.2 Limitations of Historical Financial Data 15

1.3 Objective . 17

1.4 Related Works . 18

2 Generative Adversarial Networks for Market Data Generation 19

2.1 Overview of Generative Adversarial Networks 19

2.1.1 Vanilla GAN (VGAN) . 19

2.1.2 Wasserstein GAN (WGAN) 21

2.1.3 Other Forms of GANs . 23

2.2 Using GANs for Synthetic Data Generation 24

2.2.1 Simulating Financial Market Data with GANs 25

2.3 Evaluating GAN-Based Market Simulations 29

2.3.1 Time-Series Distributional Statistics & Metrics 29

2.3.2 t-SNE Comparison . 31

3 Deep Reinforcement Learning for Derivatives Pricing and Hedging 33

3.1 Motivations . 33

3.2 Derivatives Pricing Models . 34

3.2.1 The Greeks . 35

7

3.2.2 Dynamic Greek Hedging . 36

3.3 Overview of Deep Reinforcement Learning 36

3.3.1 Model-Based vs. Model-Free 40

3.3.2 Multi-Agent Reinforcement Learning 41

3.4 Deep Hedging . 42

3.4.1 The Hedging Problem . 42

3.4.2 Applying Deep Reinforcement Learning to Hedging 44

3.4.3 GAN-Based Market Environment 46

3.5 Evaluating Deep Hedging Algorithms 47

3.5.1 Black-Scholes World vs. GAN-Based Simulations 48

4 Potentials of Reinforcement Learning and GANs in Finance 53

4.1 Identifying Statistical Arbitrage Opportunities 53

4.1.1 Capturing Mean Reversion with GANs 53

4.1.2 Improving Pairs Trading . 54

4.2 Developing Robust Risk Modeling Frameworks 55

4.2.1 Stress Testing using GAN-Based Market Simulation 55

4.2.2 Value-at-Risk using GAN-Based Approach 56

5 Conclusion 57

5.1 Summary of Analysis . 57

5.2 Results and Discussion . 59

5.3 Future Work . 59

5.4 Final Thoughts . 61

8

List of Figures

2-1 Structure of a Vanilla GAN . 20

2-2 Structure of a Wasserstein GAN . 22

2-3 Structure of a Time-Series GAN . 24

2-4 GAN-Based Spot Price Simulation 26

2-5 Upwards Trend Path Simulated by GAN 27

2-6 Downwards Trend Path Simulated by GAN 27

2-7 GAN-Based Market Simulation of Price Paths 28

2-8 t-SNE Visualization of Real vs. Synthetic Market Data 31

3-1 Reinforcement Learning for Hedging Framework 37

3-2 Deep Reinforcement Learning for Hedging Framework 40

3-3 Multi-Agent Deep Reinforcement Learning Setup 42

3-4 Learning Hedging Policy from Market State Deep Neural Network . . 45

3-5 Framework of Multi-Agent Deep Reinforcement Learning and GAN-

Based Market Simulation for Derivatives Pricing and Dynamic Hedging 47

3-6 Optimal Deep Hedging Policy PnL (Black-Scholes vs. GAN) 48

3-7 Deltas for Deep Hedging Over Time (Black-Scholes vs. GAN) 49

3-8 Histogram of Deep Hedged Return Volatility (Black-Scholes vs. GAN) 50

9

10

List of Tables

2.1 Distributional Statistics of Real vs. Synthetic Market Data 30

2.2 Autocorrelation of Real vs. Synthetic Market Data 30

3.1 The Option Greeks . 35

3.2 Distribution of Deep Hedged Return Volatility (Black-Scholes vs. GAN) 51

11

12

Chapter 1

Introduction

1.1 Background of Derivatives Pricing Methods

Financial derivatives pricing has been a prominent and important field in modern

finance as investment managers seek to understand the factors that impact derivative

contract prices and devise trading strategies on those insights. Derivatives have also

been used as a tool for hedging to reduce risk in an investor’s positions over time.

Options, one type of financial derivative, are one of the most popular instruments for

investors, trading an average daily of 39 million contracts. Previous work done on

options pricing rely heavily on assumptions about the market and underlying stock

movement to solve for partial differential equations and derive pricing models. For

example, many models rely on the assumption that stock prices move according to

a geometric Brownian motion stochastic process. The most popular framework for

pricing options is the Black-Scholes Merton (BSM) model [1], derived based on those

market assumptions to measure the value of derivatives based on factors including the

underlying asset volatility, strike price, interest rate, and expiration time. Another

method to price options is to run Monte Carlo Simulations on stock price movement,

assuming stock price follows geometric Brownian motion paths, and derive option

value based on the results of the simulations. These assumptions about the mar-

ket and underlying, however, do not always hold in the empirical world, and stock

movement patterns are heavily influenced by many factors apart from randomness.

13

1.2 Research Motivation

1.2.1 Market Assumptions

Despite the elegance of the modern theoretically-sound options pricing models such as

Black-Scholes, these models depend on many market condition assumptions that are

unrealistic in the real world. For example, in the real world, markets are incomplete

and also have many frictions. These market frictions can have significant impacts on

option prices and interfere with many trading and hedging strategies. For example,

transaction costs resulting from market bid-ask spreads are an important factor to

consider, but not accounted for by the Black-Scholes model. Furthermore, interest

rates and stock prices are affected by a large number of factors that these stochastic

pricing models do not account for. These factors reside within the empirical market

data as seen by actual stock price movements and market orders, influenced by trad-

ing transactions between various participants in the market. In reality, the market

microstructure is very complex and is affected by a large number of factors. As a

result, the Black-Scholes model and other traditional options pricing methods do not

yield exact option prices quoted on the market.

Nevertheless, the model serves as a good framework for analyzing which factors come

into play for option price movement and can be a useful baseline method. Attributes

of an option including strike price and maturity as well as the underlying spot price,

volatility, and interest rates are all important factors contributing to the option’s

price. The Black-Scholes model is given by the following partial differential equation

and the resulting closed-form solution for the price of a call option with strike price

𝐾, maturity 𝑡, underlying spot price 𝑆, underlying volatility 𝜎, and risk-free rate 𝑟:

𝜕𝐶

𝜕𝑡
+

1

2
𝜎2𝑆2𝜕

2𝐶

𝜕𝑆2
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
− 𝑟𝐶 = 0

𝐶 = 𝑁(𝑑)𝑆 −𝑁(𝑑− 𝜎
√
𝑡)𝐾𝑒−𝑟𝑡

𝑑 =
ln 𝑆

𝐾
+ (𝑟 + 𝜎2

2
)𝑡

𝜎
√
𝑡

(1.1)

14

This study explores how to adapt these conventional options pricing frameworks to

develop a model-free deep reinforcement learning-based options pricing and hedging

algorithm based on empirical market data without relying on market assumptions.

1.2.2 Limitations of Historical Financial Data

Historical financial data is very useful, as it represents real data observed in the

market, but incredibly scarce, especially for applications of machine learning methods.

If there was an abundance of historical stock price data that is representative of diverse

market conditions, it would be possible to build and train machine learning models

that are more robust when deployed live. However, even with daily-frequency market

data, assuming there are 252 trading days in a year translates to only 2,520 data points

for a 10-year period. This presents a problem with only using historical data to build

models. To effectively build models and test for an algorithm’s generalizability, it is

essential to have a large number of samples to train and evaluate a model on.

Backtesting Limitations

Often traders evaluate and test models and trading strategies by backtesting on his-

torical market data. Although backtesting is a popular methodology used for testing

trading strategy performances, it has many fundamental flaws that may bias the re-

sults and allow traders to believe the particular model or strategy will work once

deployed, when in fact it may not.

Backtesting simply uses historical market data to evaluate a strategy’s performance

but does not account for the effect of the strategy’s execution on the response from

other market participants. This flaw is fundamental in the backtesting methodol-

ogy because it uses the same data for evaluation, regardless of the trading strategy

being evaluated. However, in real-world markets, the execution of different trading

strategies, varying by factors such as order size, may have a significant impact on

other market orders placed in response. Consequently, backtesting on historical data

15

may bias the evaluation result and is not representative of how a trading algorithm

will actually perform once deployed. Furthermore, the factors that affect the mar-

kets are constantly evolving and changing over time. Shifts in economic trends may

make backtesting on historical data unfavorable because of the inflexibility of testing

conditions. Alternatively, a framework that learns from historical market data and

consistently generates new market data with similar properties is more favorable.

Generating Market Data

A traditional method for generating market data comes through the use of Monte

Carlo simulations, in which a large number of data samples are generated through

probabilistic simulations. These simulations are parameter-based and rely on the

careful selection of parameters to produce accurate and representative data. How-

ever, not only are markets always dynamic and have constantly changing conditions,

it is difficult to determine which parameters are most important to include in the

simulation. Many derivatives pricing models rely on these assumptions about the

distribution of the underlying asset price movement. For example, a popular frame-

work for using Monte Carlo simulations to generate stock price paths assumes stock

prices follow geometric Brownian motion processes and price levels are log-normally

distributed. The Black-Scholes model assumes the underlying stock follows a geo-

metric Brownian motion process (with expected return 𝜇 and volatility 𝜎), defined

by the following stochastic process:

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊

𝑆𝑇 = 𝑆0 * 𝑒(𝑟−
1
2
𝜎2)𝑡+𝜎

√
𝑡*𝑁(0,1)

(1.2)

Using this process, Monte Carlo simulations generate a large number of stock price

paths based on the specified parameters return volatility 𝜎 and some randomness.

The advantage of this approach is the unbounded ability to generate large amounts

of data representative of the vast amount of different possible paths that the stock

can take. The disadvantage, however, comes with the parametric assumptions about

16

underlying stock price movement which may not be completely market-realistic. In

reality, stock price movements depend on a large number of factors and contain com-

plex properties. Monte Carlo simulations are generally useful for simulating data with

a known and constant probability distribution. However, in the case of financial data,

market dynamics and conditions are constantly changing, and it may not be feasi-

ble to consistently know the true underlying probability distribution for stock returns.

To overcome some of the limitations of traditional methods like backtesting and

Monte Carlo simulations, a possible solution is to create a generative market sim-

ulation system that can produce synthetic market data based on historical market

data. Adversarial machine learning has the ability to generate fake data that closely

resembles real data. In this study, we explore the use of generative adversarial net-

works (GANs) to learn the market microstructure and systematically generate re-

alistic synthetic market data based on historical market data. This approach is an

unsupervised, non-parametric approach as opposed to the use of Monte Carlo simu-

lations. Ultimately, we adapt this framework to train and evaluate the efficacy of our

proposed deep reinforcement learning-based pricing and hedging methods.

1.3 Objective

Previous work done on derivatives pricing rely heavily on assumptions about the mar-

ket and underlying stock movement to be consistent with theoretical standards for

solving partial differential equations and deriving pricing models. For example, many

simulations rely on the assumption that stock prices move according to a geometric

Brownian motion stochastic process. This assumption, however, does not always hold

in the empirical world, and underlying price movement patterns are heavily influenced

by many factors apart from randomness. The most common and famous framework

to compare Monte Carlo pricing simulation results to is the Black-Scholes Merton

(BSM) model. This framework is derived from a partial differential equation that

also relies on market assumptions.

17

This study extends previous work and hopes to implement and apply deep reinforce-

ment learning methods to price derivatives on assets in a diverse set of markets with

more realistic conditions. This research aims to extend previous work by implement-

ing deep reinforcement learning methods to price financial derivatives and perform

dynamic hedging in a diverse set of markets with more realistic market conditions

reflected through empirical data. The objective of the deep reinforcement learning

approach is to perform better than traditional models on a variety of financial deriva-

tives for multiple asset classes. Then, better hedging strategies can be implemented

to achieve higher expected returns and lower volatilities. Multiple state-of-the-art re-

inforcement learning models will be compared against traditional baseline models for

the financial derivatives considered. We explore the implementation of a GAN-based

synthetic market to train and evaluate deep hedging agents.

1.4 Related Works

There have been previous works done using deep reinforcement learning for options

pricing and hedging. Hans Buehler et al. (2019) researched and developed "Deep

Hedging" [2] methods using deep reinforcement learning to devise optimal hedging

strategies while accounting for market frictions and other factors that impact deriva-

tives prices. In "Deep Hedging", the authors use a synthetic market based on the

Heston Model [3] to generate data with a parametric approach. Furthermore, Igor

Halperin implemented a "QLBS" (Q-Learning Black Scholes) [4] model to price and

hedge options in a Black-Scholes world based on Q-learning methods. James Hutchin-

son et al. propose a non-parametric options pricing and hedging approach using tra-

ditional machine learning and learning network algorithms [5]. Gordon Ritter et al.

propose a framework for using reinforcement learning to hedge derivatives that can be

accurately priced [6]. This study extends previous works of deep hedging by training

and evaluating the algorithm in a GAN-based market that generates realistic market

data representative of and exhibiting similar properties to real market dynamics.

18

Chapter 2

Generative Adversarial Networks for

Market Data Generation

2.1 Overview of Generative Adversarial Networks

2.1.1 Vanilla GAN (VGAN)

Generative adversarial networks (GANs) are one type of powerful generative AI that

serve as the backbone of many applications in synthetic data generation and re-

cent Deepfake technology. GANs were first introduced as an innovative unsupervised

framework to generate synthetic data that represents real data by simultaneously

training a generator and discriminator to learn the underlying distribution of the real

data. Ian J. Goodfellow et al. (2014) demonstrated the efficacy of GANs in generat-

ing synthetic data that resemble the properties of real data [7]. The generator takes

real input data 𝑥 and adds Gaussian-distributed random noise 𝑧 to output synthetic

data, while the discriminator tries to distinguish the output from the generator and

the real data. As the discriminator performs better in distinguishing real and syn-

thetic data, the generator learns more about the underlying distribution and becomes

better at generating new data. Vanilla GANs (VGAN) have been very successful in

generating fake images and videos. During the training process, the discriminator

acts as a classifier and outputs a probability that the generator-produced sample is

19

fake. The standard machine learning process of using gradient descent is performed

to continuously improve both the generator and discriminator simultaneously. The

objective function of the generator 𝐺 and discriminator 𝐷 used to update the GAN’s

weights, computed at each training iteration, is given by the following value function

𝑉 in which the generator tries to minimize and the discriminator tries to maximize.

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧)))] (2.1)

In the context of generating market data, real historical time-series data of equity

markets are used as input instead of images. The end goal is still the same, which

is to produce representative synthetic data that exhibit similar properties as the real

data. The structure of a vanilla GAN is displayed in Figure 2-1.

Figure 2-1: Structure of a Vanilla GAN

The generator and discriminator compete in a zero-sum game with the objective

of training the generator to outperform the discriminator. At each training itera-

tion, the loss is computed given the discriminator’s performance and the errors are

backpropagated through the generator and discriminator to adjust weights. As the

discriminator becomes better at distinguishing real and fake data, the generator has

a higher loss and is forced to adjust its weights to generate data that follow the dis-

tribution of real data more closely. At the end of the training process, the generator

is able to produce new data that resembles the original data, since it has learned the

distribution of the real data during the training process.

20

Applications of GANs

GANs have mostly been used for image processing tasks such as generating fake

images or performing adversarial attacks on neural networks. However, the framework

of GANs can be extended to work with other types of data as well, including tabular

and time-series data. This has great implications for working with financial data,

as the majority of data in finance consists of tabular and time-series data, such as

asset price movement and limit order books. Similar to the GANs used in Deepfake

technology, GANs also have the potential to learn the underlying distributions and

data-generating processes of price evolution and order books. This allows GANs to

learn the market microstructure and price evolution process directly from data instead

of relying on various parametric assumptions about market dynamics.

2.1.2 Wasserstein GAN (WGAN)

Nevertheless, vanilla GANs often suffer from a common problem known as mode col-

lapse, where the model hits a local minimum during the training process and is unable

to continue learning from the data. Very often, this issue arises with the structure of

the GAN due to the non-convexity of the discriminator’s loss function during training.

Mode collapse ultimately results in the generator producing the same data with the

discriminator unable to learn to distinguish this fake. For example, if the generator

learns to produce one possible path of simulated market data that is indistinguish-

able from real market data to the discriminator, then the generator will continue

producing this single instance of market data. This can be caused by a variety of

factors, with vanishing gradients in the discriminator as one possibility. In order to

implement a useful market simulator, the generator component of the GAN must be

versatile and learn to generate a large variety of synthetic data that is representative

of empirical data. To achieve this versatility, it is essential that the discriminator can

perform well during the training process to force the generator to learn to generate a

diverse set of useful representations of market data.

21

Many alternative forms of GANs have been proposed to tackle this issue. One method

to address the issue of mode collapse in vanilla GANs is to adjust the output of the

discriminator so that it returns a score instead of a probability. Rather than being

strictly a classifier of real and fake images, it is possible to turn the discriminator into

a critic of generated data instead. This creates the benefit of allowing the discrimina-

tor output to exceed the bound of 0 to 1, which can alleviate the effects of vanishing

gradients and mode collapse. Arjovsky, Chintala, and Bottou (2017) explore the use

of Wasserstein GANs (WGAN) [8] to implement this idea by using the Wasserstein

loss metric as the output of the discriminator. We will not delve into the derivation of

gradient descent, but instead, focus on the implementation with financial data. With

a set of 1-Lipschitz functions 𝐷𝑓 , the Wasserstein GAN value function is defined by:

min
𝐺

max
𝐷

𝑉𝑊 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝐷𝑓 (𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧)[𝐷𝑓 (𝐺(𝑧))] (2.2)

Instead of making classifications like the discriminator of a VGAN does, the discrim-

inator of a WGAN computes the Wasserstein distance and uses this loss to update

weights. The other components of the model remain relatively similar. The structure

of a Wasserstein GAN is displayed in Figure 2-2.

Figure 2-2: Structure of a Wasserstein GAN

For implementing a useful synthetic market environment, the generator must be ro-

bust in creating market data from a wide range of possible market conditions and

possibilities. Gulrajani et al. (2017) propose an additional improvement to the orig-

22

inal WGAN framework by introducing a critic gradient penalty [9] instead of the

standard weight clipping approach in the training process, which will further help

with mitigating mode collapse and promoting stability in data generation. The gra-

dient penalty, combined with the use of Wasserstein distance, greatly improves the

GAN’s ability to learn robust representations of real market data. This model can

now be trained using historical financial data, and the trained generator can be used

to construct a representative synthetic market environment which may be useful for

a variety of applications, particularly for machine learning methods.

2.1.3 Other Forms of GANs

Additional studies have been done in devising new methods to alter the GAN’s struc-

ture to improve performance in generating better data. Many other forms of GANs

have recently been developed, many of which serve a specific task in data generation.

For example, many GANs have been tailored to work particularly on time-series data,

which exhibit properties that differ from image data. As time-series data often has

high complexities, some variations of GANs are implemented using convolutional and

recurrent neural networks in the generators and discriminators to learn sequential

data. Olof Mogren (2016) describes Continuous Recurrent Neural Network GANs

(C-RNN-GAN) [10], a variation of GANs, to generate continuous sequential data.

Nevertheless, the proposed framework, unlike WGANs, relies on the classification

framework and may suffer from mode collapse issues when applied to financial data.

Time-Series GANs

One specific feature of time-series data that differs from other types of data is that

time-series exhibit various temporal dynamics, which should be preserved when using

a GAN to generate time-series data. However, the original framework of GANs does

not provide any specific means of learning and maintaining temporal correlations on

time series. A notable extension of the GAN framework to work with time-series

data is the Time-Series GAN. Jinsung Yoon, Daniel Jarrett, and Mihaela van der

23

Schaar (2019) discuss solutions to this problem and propose a modification of GANs

to generate more-realistic time-series data that maintain statistical and temporal

properties [11]. The Time-Series GAN (TimeGAN) preserves the temporal dynamics

of time-series data by introducing a step-wise supervised loss to allow the genera-

tor and discriminator to learn the conditional distribution of the data, as well as an

embedding network to reduce the dimensionality of the feature space during train-

ing. TimeGAN combines the adversarial learning framework with autoencoders to

simultaneously learn and optimize the supervised and unsupervised losses, as shown

below.

Figure 2-3: Structure of a Time-Series GAN

2.2 Using GANs for Synthetic Data Generation

Although state-of-the-art applications of GANs involve image processing tasks, this

framework can be adapted to work with data other than images, including tabu-

lar and time-series data. The goal of using GANs as an alternative approach to

generating and simulating data is to remove the need for parameterization and as-

sumptions about market dynamics. Since GANs are an unsupervised learning and

non-parametric framework, they learn the distribution directly from real data instead

of relying on the careful selection of parameters.

24

The trained generator portion of the GAN can be used to generate new data given a

starting point and random noise input. During the synthetic data generation process,

the discriminator portion of the GAN is not required, as it served its primary pur-

pose of improving the generator and helping it learn the underlying data-generating

process during training. As discussed before, the objective of the GAN is to gener-

ate a diverse set of possible market scenarios representative of the true patterns and

dynamics observed in empirical market data. In the context of simulating financial

time-series data of spot prices in the market, this translates into using the generator

to generate spot price paths that have relatively similar distributional statistics and

movement patterns to real spot price data [12].

Markets can be bullish, bearish, or stagnant at most points in time, but true market

dynamics can be incredibly complex and noisy which presents a huge challenge for

working with financial data. Ideally, the generator will be able to simulate many pos-

sible market scenarios that are representative of the complexity and noisiness present

in empirical data. The possibilities and randomness of market dynamics are repre-

sented as random noise inputted into the generator when generating data.

2.2.1 Simulating Financial Market Data with GANs

Although the model can be adapted to work with any asset that has historical data

available, we will focus on using the trained model for a specific stock, such as Apple

(AAPL). AAPL has an abundance of historical price data available, dating back to

the 1980s, with over 40 years of data. The generator requires a starting point in the

financial time series to then input random noise and generate new data. Of course,

at any point in time during the life of the company, there is a current price level and

an unpredictable and uncertain future trend. Being able to simulate many realisti-

cally possible paths of data can be useful for training and evaluating algorithms that

require an abundance of data. With the trained GAN, a large number of data points

can be generated by simply producing random noise as input. The generator uses

25

a starting point and combines random noise with the underlying distribution it has

learned during training. Using the trained generator to simulate one path of spot

prices for AAPL yields the following results displayed below.

Figure 2-4: GAN-Based Spot Price Simulation

As we can qualitatively see in the plot above, the generated data exhibits similar

properties as the real data and has similar movement patterns. The real and gener-

ated data both have the same starting point, at a price level of around $96, but the

GAN has learned the dynamics of AAPL’s historic price movement and has gener-

ated another plausible scenario of how the price might have evolved over time. This

systematic data generation framework has great implications for a variety of finan-

cial applications, most importantly enhancing algorithms that require lots of data.

The generation of many alternative paths from a starting point can be used as data

to train and evaluate models and strategies. Ideally, the models and strategies that

traders and investors develop are robust to different market conditions and possibili-

ties, which can be captured by the GANs trained on historical market data.

26

For example, the generator of the GAN would ideally be able to produce a diverse

set of market data, including data under both bullish and bearish markets. Using the

trained generator, the diagrams below show AI-generated instances of the evolution

of AAPL in bullish and bearish conditions.

Figure 2-5: Upwards Trend Path Simulated by GAN

Figure 2-6: Downwards Trend Path Simulated by GAN

The figure above shows an AI-generated path that has an upward trend compared to

the real historical data. As shown above, the red lines represent the GAN-generated

27

data and the blue lines represent the actual data. In figure 2-5, the generated data

appears to have an upward trend relative to the actual historical data, while in figure

2-6, the generated data appears to have a downward trend relative to the actual his-

torical data. Although the real and generated data have different trends, the temporal

properties of stock price dynamics appear to be relatively similar. This divergence in

the real and generated paths, along with the preservation of price movement dynam-

ics, is essential for being able to use GAN-generated data for training and evaluating

models and strategies. It is possible to use this generator to generate an abundance

of realistic market data under various market scenarios, similar to using Monte Carlo

simulations. The difference is that while Monte Carlo simulations are parametric

and probability-based, which may not capture the complexities and patterns of real

market dynamics, GAN-generated data exhibits properties similar to empirical data

and has a similar underlying distribution. It is interesting to observe, however, that

a plot of GAN-generated series looks very similar to Monte Carlo simulations since

both methods capture a variety of possibilities of stock price movement. A plot of

GAN-based market simulation for AAPL is displayed below.

Figure 2-7: GAN-Based Market Simulation of Price Paths

28

2.3 Evaluating GAN-Based Market Simulations

To be confident in the accuracy of GAN-generated market data in representing em-

pirical data, there must be a systematic framework for quantitatively evaluating the

similarity of synthetic data to real data. Unlike synthetic image generation with

GANs, where the quality of the generated data can be visually observed by humans,

synthetic time series and financial data are harder to evaluate directly. It is easier

for humans to observe the facial features of generated images than it is to identify

common-occurring statistical properties present in time series data.

However, since GANs are an unsupervised machine learning framework, there isn’t a

single or standard way to evaluate performance [13]. With supervised machine learn-

ing methods, the standard way of measuring performance is to make predictions on a

test data set and compute a metric such as accuracy or root mean square error. Since

GANs are generating new data, it is infeasible to use the same evaluation methods.

However, this does not mean that the similarity between GAN-generated synthetic

data and real data cannot be measured. There are various metrics and statistics ap-

parent in time-series data that can be measured, evaluated, and compared between

synthetic market data and real market data. Ideally, these metrics will be similar

in value which indicates that the GAN has learned the underlying distribution of

the financial time-series data. Although it is difficult to explain GAN outputs, the

metrics will bring confidence into the GAN learning market dynamics from data.

2.3.1 Time-Series Distributional Statistics & Metrics

There are various time-series metrics and statistics that can be computed that de-

scribe the temporal dynamics and conditional distribution of the time-series data.

For example, distributional statistics such as mean, median, minimum, and maxi-

mum may be useful for comparing real and synthetic data to ensure the synthetic

data has a relatively similar distribution. There should be some degree of variation

in the statistics so that the GAN is able to generate a diverse set of data.

29

However, properties that exist in financial time-series data are often more complex in

nature. It is simple to generate data with similar distributional statistics, as Monte

Carlo methods do well, but difficult to mimic the exact temporal features that exist

in financial data, since the exact properties of stock returns are unknown. To quan-

titatively evaluate the ability of the GAN to generate meaningful representations of

market data, time-series feature extraction can be used. Maximilian Christ et al.

(2018) explore various time-series feature extraction [14] methods to gain insight into

the temporal dynamics of time-series data. The tsfresh package encapsulates over

794 time-series features that can be used to describe the properties and behaviors of

time-series data. A comprehensive list of all extracted features can be found on the of-

ficial tsfresh documentation page. A summary of the time-series metrics is displayed

below for real market data, GAN-generated data, and Monte Carlo simulations.

Statistics Mean Median Variance Skewness Kurtosis

Real Market Data 20.45 19.86 1.64 0.61 -0.96
GAN Market Data 20.78 20.04 2.28 0.26 -1.66
Monte Carlo Simulation 22.37 21.49 1.32 0.21 -0.25

Table 2.1: Distributional Statistics of Real vs. Synthetic Market Data

Autocorrelation Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

Real Market Data 0.84 0.72 0.61 0.47 0.36
GAN Market Data 0.95 0.86 0.75 0.66 0.52
Monte Carlo Simulation 0.67 0.42 0.35 0.21 0.15

Table 2.2: Autocorrelation of Real vs. Synthetic Market Data

As shown from the distributional statistics and autocorrelations of the real and GAN-

generated market data above, they appear to have similar properties. GAN-generated

market data seems to emulate the patterns of real market data more closely than

Monte Carlo simulations. This implies that there may be some specific properties or

dynamics of stock price movement that are unable to be modeled by simple proba-

bilistic simulations. These results demonstrate the efficacy of using GANs to generate

representative market data that may be useful for other purposes.

30

2.3.2 t-SNE Comparison

There are a large number of tsfresh time-series features to compare manually. One

method to evaluate how similar the metrics of the generator’s synthetic data are to

the empirical data is to use the t-distributed stochastic neighbor embedding (t-SNE)

[15] algorithm. As high-dimensional data is difficult to visualize, the t-SNE method

visualizes the high-dimensional inputs by mapping the data from a high dimension to a

low dimension. Using this method, we can compare the t-SNE mapping visualizations

between the time-series metrics of generated market data and real market data. Using

the generator to generate 1000 samples, the t-SNE plot of real (teal) and synthetic

(red) financial time-series data metrics is displayed below.

Figure 2-8: t-SNE Visualization of Real vs. Synthetic Market Data

The t-SNE visualization shows that the high-to-low dimensional mapping of the real

data closely follows that of the GAN-generated data. This shows that the time-series

features previously described are similar for both real and synthetic data, implying the

GAN’s ability to learn the properties of empirical stock returns. Being able to model

complex market dynamics has great potential as will be explored in later chapters.

31

32

Chapter 3

Deep Reinforcement Learning for

Derivatives Pricing and Hedging

3.1 Motivations

Previous work on derivatives pricing relies heavily on assumptions about the market

and underlying stock movement to be consistent with theoretical standards for solv-

ing partial differential equations and deriving pricing models. For example, Monte

Carlo simulations rely on the assumption that stock prices move according to a geo-

metric Brownian motion stochastic process. As mentioned in Chapter 1, one of the

most famous and widely-used options pricing models is the Black-Scholes Merton

model. This framework is derived from a partial differential equation that also relies

on many market condition assumptions that may not necessarily hold in real-world

markets. For example, the model assumes through the option’s lifetime: no dividend

payouts, constant risk-free interest rate, constant underlying volatility, and no trans-

action costs. The model also assumes the market has no-arbitrage conditions and

there are no transaction costs.

However, these factors are all empirically dynamic and can affect underlying price

movements and options premiums, but are not accounted for. These models serve

as a good foundation for understanding some of the important factors that impact

33

option prices, but in the real market, market dynamics can be affected by a large

number of constantly changing factors. Many market frictions exist and are changing

over time, which impact the value of financial derivatives. Furthermore, there are

many types of different financial derivatives, each with unique properties, with op-

tions being one of the most popularly traded. A practical model would be developed

on the basis of real market data that reflects the properties of market conditions on

which the derivatives are traded, including transaction costs and other frictions.

3.2 Derivatives Pricing Models

To understand the fundamental ideas behind derivatives pricing and hedging, we first

examine the theoretical approach with traditional options pricing models applied to

risk-neutral pricing. As discussed in Chapter 1, the Black-Scholes model is the most

widely-adopted foundation for understanding and analyzing option value and the fac-

tors that influence it. However, the model is not based on historical stocks and options

data, but instead assumes the properties of stock price movement and makes many

idealistic assumptions about market dynamics. Iterative improvements have been

proposed to improve the framework, such as modeling using stochastic volatility as

with the Heston model. Furthermore, derivatives pricing models have been developed

for other types of assets other than equities, with different movement dynamics.

For example, the Vasicek model is commonly used to model the evolution of in-

terest rates to price interest rate derivatives. Another example is Black’s model, an

extension of the original Black-Scholes model, commonly used to price options on

futures. Many models have been developed for various purposes and financial instru-

ments, but they all rely on parametric assumptions instead of historical market data.

This makes the basis of these models scientific, as the models are able to explain the

specific factors that influence derivative prices, but potentially inaccurate as market

dynamics are constantly changing. These models can also be applied in the context

of devising hedging strategies to manage the risk of changes in the underlying factors.

34

3.2.1 The Greeks

Derivative prices are affected by a large number of variables that traders must con-

stantly account for when developing trading and hedging strategies. There are some

obvious factors that affect option prices that are captured, for example, by the Black-

Scholes model: underlying price, time to expiration, volatility, and interest rate. The

impact that a change in each of these aforementioned factors has on option prices is

captured by the Greeks, which measure the sensitivity of option prices to these fac-

tors. Traditionally, traders and investors devised hedging strategies using the Greeks

for the options they traded to account for the risk factors of option prices. Hence,

various popular hedging methods used by many traders today include those such as

delta hedging and gamma hedging, so that portfolios may remain delta or gamma

neutral. The idea is to reduce the sensitivity of the options portfolio’s value to un-

derlying price movements as much as possible. A table of the most commonly-used

Greeks and the corresponding definitions is displayed below.

Greek Value Sensitivity to

∆ Delta 𝜕𝑉
𝜕𝑆

Underlying Price

Γ Gamma 𝜕2𝑉
𝜕𝑆2 Delta

Θ Theta 𝜕𝑉
𝜕𝑡

Time

𝜌 Rho 𝜕𝑉
𝜕𝑟

Interest Rate

𝜈 Vega 𝜕𝑉
𝜕𝜎

Volatility

Table 3.1: The Option Greeks

The option pricing models previously discussed provide a method to derive these

Greeks for various options. Using the Greeks to devise hedging strategies is a rea-

sonable approach in the absence of sufficient data and computational capacity [16].

However, this approach to solving the hedging problem is not as efficient as it could be,

given the recent advancements in data-driven machine learning methods. Nonethe-

less, the Greek-based method is still widely practiced as its idea is intuitive, which is

to adjust positions to reduce the impact of changes in the impactful factors.

35

3.2.2 Dynamic Greek Hedging

Perhaps one of the most practiced approaches used for hedging is delta-hedging, which

involves adjusting the hedge ratio of a derivative position in response to changes in

the underlying asset price, reducing the risk exposure of the position. The delta of an

option represents its sensitivity to underlying price changes. Since underlying asset

prices, stock prices, for example, are dynamically changing over time, it is important

to dynamically rebalance portfolio positions to mitigate risks. Many traders look to

maintain a delta-neutral position, in which the overall delta of the portfolio is zero,

in order to mitigate risks in underlying price movements. However, due to transac-

tion costs and other market frictions, perfect hedges are very difficult to achieve, and

dynamically rebalancing delta positions can be extremely costly and often impractical.

Hedging is a problem that has many complexities to it based on various market risks.

Delta hedging is widely known for its simplicity in interpretation and implementa-

tion. However, derivative prices are often impacted by a larger number of factors

and market frictions that exist in real markets. Instead of the risk-neutral pricing

framework, it may be beneficial to explore machine learning methods for solving the

hedging problem to provide more accurate and robust results.

3.3 Overview of Deep Reinforcement Learning

Reinforcement Learning

Reinforcement learning (RL) is a method that overcomes many limitations of tra-

ditional machine learning. It involves exposing an agent to an environment with

different states, available actions, the corresponding rewards for those actions, and

letting the agent learn to maximize rewards through a Markov decision process. The

power of reinforcement learning stems from its robustness and ability to quickly adapt

to changing conditions relative to other types of machine learning methods. The re-

sults of state-of-the-art reinforcement learning methods have been promising, such

36

as AlphaGo, the AI developed by DeepMind that beat the world Go champion, and

ChatGPT, the language model developed by OpenAI that can answer questions and

generate text in a human-like manner.

In an environment with current state 𝑠𝑡 at time 𝑡, an agent can perform a set of

actions 𝑎𝑡 ∈ 𝐴 that results in reward 𝑟𝑡 at time 𝑡 and moves the environment to the

next state 𝑠𝑡+1. The environment is represented as a Markov decision process and the

agent decides the optimal action to perform at each state 𝑠𝑡 according to its policy,

𝜋 : 𝑠𝑡 → 𝑎𝑡. A diagram showing the reinforcement learning framework for the hedging

problem is displayed below.

Figure 3-1: Reinforcement Learning for Hedging Framework

This framework can be applied to a financial market environment with options trad-

ing with empirical economic and financial factors. The benefit of this approach is

that it allows these factors to change dynamically across various time periods, which

the agent will account for and gradually learn as it trains and explores the market

37

environment. The goal is to implement a deep reinforcement learning system that can

accurately price derivatives and dynamically hedge under actual market conditions

and frictions. This can be done by using empirical data to learn the optimal policies

for pricing and hedging through a policy gradient method. In the market environ-

ment, the agent will be given market conditions at each state and will incrementally

learn the optimal hedging policy for correctly pricing derivatives and compute a PnL

and Sharpe ratio for the dynamic hedging strategy as a reward function. Finding the

optimal hedging policy, 𝜋⋆, results in maximizing the discounted cumulative reward:

𝜋⋆(𝑠𝑡) = max
𝑎𝑡∈𝐴

E[
∑︁
𝑡=1

𝛾𝑡𝑅𝑡|𝑠𝑡, 𝑎𝑡] (3.1)

with 𝛾𝑡 as the discount factor at time 𝑡, as the agent will also want to account for the

rewards from future states as the result of its actions. There are two ways to optimize

the reinforcement learning agent. One way is to directly learn the expected rewards

with a 𝑄 function, 𝑄(𝑠𝑡, 𝑎𝑡) = E[
∑︀

𝑅𝑡|𝑠𝑡, 𝑎𝑡] given a state and action pair (𝑠𝑡, 𝑎𝑡) and

then using the 𝑄 function to optimize the objective in equation 3.1. This method is

commonly known as Q-learning, a form of value learning algorithm, to learn the value

of an action at a particular state. The second method is to directly learn the optimal

policy, 𝜋⋆(𝑠𝑡), without learning a mapping function of state and actions to rewards.

This approach is known as policy learning and has produced promising results in

state-of-the-art reinforcement learning algorithms.

Combining Deep and Reinforcement Learning

Early concepts of deep learning have been present since the 1940s, such as artificial

neurons and perceptrons that could learn simple representations of data. However,

because of early artificial neural networks’ limited complexity combined with limita-

tions in data and computing abilities, deep learning technology did not become widely

adopted by institutions until the 21st century. In the present time with exponentially

growing amounts of data and advanced processing units for fast computation and

matrix algebra, the true potentials have deep learning have become gradually real-

38

ized. The core of deep learning lies in its ability to learn incredibly complex and

abstract relationships, both linear and non-linear, from vast amounts of data and be

able to make accurate predictions using the learned representation. Often when the

amount of data is enormous and highly dimensional, deep learning has proven to be

significantly more effective compared to traditional forms of statistical learning.

Nevertheless, deep learning on its own has limitations, particularly in the context

of modeling and predicting financial markets. Deep learning learns from the data it

is provided but suffers from data drift, when the underlying distributions of the data

change, and concept drift, when the actual factors that influence predictions changes.

Because of these issues and the dynamic nature of the markets, it is difficult to develop

a sustainable systematic framework for investing and hedging based solely on deep

learning methods. However, combining the prediction power of deep learning with

the robustness and flexibility of reinforcement learning, known as deep reinforcement

learning, may yield much better results when applied to the financial markets.

There are various state-of-the-art deep reinforcement learning algorithms that have

recently been developed and have seen success in many applications, from playing

games to autonomous driving. Deep Q-networks (DQN) is one type of algorithm that

uses deep neural networks to approximate 𝑄 values as previously described. This

framework was first used by DeepMind [17] to play Atari games by using a convo-

lutional neural network to learn the value function of future rewards based on the

game pixels. Another successful algorithm is known as proximal policy optimization

(PPO) [18], a value function learning-based method, which has performed relatively

similar or better than other state-of-the-art algorithms. Both of these deep rein-

forcement learning algorithms, and many others, can be applied to training agents to

learn optimal hedging policies. Petter Kolm et al. demonstrate how proximal policy

optimization can outperform traditional delta hedging and other deep reinforcement

learning algorithms in finding the optimal hedging policy and optimizing PnL, train-

ing time, and amount of data required for training [19].

39

In a simplified world with only a limited number of states of the market, traditional

reinforcement learning may be used, since the state-action-reward combinations are

easily computed. However, in environments such as the financial markets, there are a

very large number of states, with combinations of different factors including risk-free

rates, stock movements, costs, etc. To account for the large dimensionality and com-

plexity, this study examines the use of deep reinforcement learning methods to learn

the states and rewards of the market by fitting a deep neural network on empirical

data and using the learned states and rewards to train a reinforcement learning agent.

The deep reinforcement learning framework for hedging is displayed below.

Figure 3-2: Deep Reinforcement Learning for Hedging Framework

3.3.1 Model-Based vs. Model-Free

Some investors try to understand the overall market structure and make trading de-

cisions based on their understanding, while other investors base trading decisions

on their past experiences of successes and failures. In the reinforcement learning

40

methodology, agents can also learn in these two types of ways. The former way,

where the agent tries to learn a model of the environment to make predictions on the

consequences and resulting reward of its current actions is known as model-based re-

inforcement learning. In this approach, the agent predicts rewards before any action

is taken. This allows the agent to predict the future outcome of its actions based on

the model of the environment it has learned. However, this makes the agent greedy

and the agent may carry out any action despite immediate consequences. Further-

more, the learned model of the environment may be inaccurate when environment

dynamics change, leading the agent to make poor decisions. Financial markets are one

example of an environment that is often unpredictable and constantly changing, and

a representation of the overall market in the present day may not be representative of

the next. Consequently, model-based approaches may have weaknesses when applied

to solving financial problems, just as investors may find it difficult to consistently

predict the outcomes of their trading decisions before those trades are actually made.

To account for the dynamic nature of the financial markets, it may be more ap-

propriate for agents to optimize their policies based on the rewards after actions have

been taken, just as investors examine their PnL and Sharpe ratios after trades are

executed. The latter way, where the agent learns to optimize its policy solely on

its experience interacting with the environment during the training process is known

as model-free reinforcement learning. In the context of hedging policies, the agent

will learn by executing various strategies and observing the results of those strategies

to optimize its policy. This allows the agent to be more robust to changing market

conditions and learn directly from experience in the market.

3.3.2 Multi-Agent Reinforcement Learning

Oftentimes, simulations are carried out by more than one agent. For example, in fi-

nancial markets and exchanges, there are many market participants including traders

and investors that are simultaneously trading with each other. The orders that are

made and executed between these market participants contribute to price movements.

41

However, understanding and being able to simulate the interactions between these

market participants may be beneficial for determining optimal trade executions and

strategies. These market participants can be represented as multiple agents in the

reinforcement learning framework. Instead of just a single agent in the environment,

the market environment consists of multiple agents competing against each other to

achieve the maximum reward. The multi-agent deep reinforcement learning frame-

work for multiple trading agents is displayed below.

Figure 3-3: Multi-Agent Deep Reinforcement Learning Setup

Furthermore, it may be possible to represent all the agents in the system with a

single generator agent that produces market transaction data. Victor Storchan et

al. propose a framework called "MAS-GAN" [20] to generate realistic market data

by having a GAN represent the pool of market participants and learning to produce

synthetic order book and bid-ask price data. This system can be used to not only train

deep hedging algorithms on realistic multivariate time-series data but also evaluate

their robustness to responses in the market, which is not accounted for in backtesting.

3.4 Deep Hedging

3.4.1 The Hedging Problem

Portfolios are constantly subject to a variety of risk factors that may significantly

impact the portfolio’s value and cause high volatility in returns. Hedging is a popular

method to combat the risk that subjugates portfolios. The main idea behind this

42

approach is to reduce risk and volatility by taking an offsetting position in another

asset, such as a derivative of the underlying. However, hedging can be costly in a

market with transaction costs and other frictions, along with the financial constraints

of various investors. An effective hedging strategy must not only account for all the

transaction costs involved but also all other imposed constraints.

Consider a discrete-time market at times 𝑡𝑛 ∈ 𝑇 = {0, 𝑡1, 𝑡2, ..., 𝑡𝑁} with a trade-

able risk-free asset of price 𝐵𝑛 = 𝑒𝑟𝑡𝑛 , and 𝐷 tradeable risky assets of prices 𝑆𝑛 =

[𝑆1
𝑛, 𝑆

2
𝑛, ..., 𝑆

𝐷
𝑛]. There is a tradeable derivative in the market on the risky asset with

a payoff equal to 𝜑(𝑆𝑛). In a complete market, it is possible to find a portfolio that

fully replicates the payoff of a derivative. However, real markets are incomplete and

strategies cannot replicate derivative payoffs, creating the objective of deciding the

optimal policy for pricing and hedging traded derivatives to minimize the portfolio’s

value risk. Let the value of the portfolio at time 𝑡𝑛 be 𝑉𝑡𝑛 = 𝐵𝑡𝑛(𝑉𝑡0 + 𝐷𝐶𝐺𝑡𝑛)

where 𝑉0 is the initial capital and 𝐷𝐶𝐺𝑛 is the discounted cumulative gain of the

hedging portfolio at time 𝑡𝑛. The asset allocations to each risky asset, 𝑆𝑛, is defined

by �⃗� := {𝛿𝑛}𝑁𝑛=0 resulting in the hedged portfolio. To find the optimal hedging policy

that minimizes the hedged portfolio risk, the objective of the hedging problem then

can be defined as:

𝛿* = min
𝛿∈Δ

𝜌(𝑉 𝛿
𝑡𝑁

− 𝜑(𝑆𝑡𝑁)) (3.2)

where 𝛿* is the optimal hedging policy that minimizes portfolio risk in a set of ∆

possible hedging strategies. In this case, 𝜌 represents a risk measure such as value at

risk, conditional value at risk, quadratic penalty, etc. The ultimate goal of the hedg-

ing problem is to optimize this objective and find the optimal hedging strategy under

realistic market conditions including transaction costs and other frictions. However,

because of the complexity and dimensionality of a realistic market environment, there

is no closed-form solution for the optimal hedging strategy in equation 3.2. Instead,

to approximate the optimal hedging policy 𝛿*, the hedging strategies ∆ can be pa-

rameterized as deep neural networks that can be trained to learn on data.

43

Ideally, to minimize a portfolio’s risk exposure to underlying price movements, the

portfolio should constantly be rebalanced to remain as close to delta-neutral as pos-

sible. However, as real markets typically have transaction costs, hedging can be very

costly. Consequently, traditional Greek hedging methods such as delta hedging are

not optimal and do not perform as well under real market conditions, having limited

flexibility. Alternatively, a reinforcement learning approach can potentially learn the

relationship between market states and the optimal hedging policy [21].

3.4.2 Applying Deep Reinforcement Learning to Hedging

Deep hedging is a systematic framework for using deep reinforcement learning to learn

the optimal policy for derivatives pricing and dynamic hedging based on the aggrega-

tion of market data. The deep hedging approach uses neural network representations

to learn and optimize hedging policies. Hans Buehler et al. (2019) demonstrate in

the original paper that neural networks can approximate well optimal hedging policies

under general market conditions in the presence of frictions such as transaction costs.

As some advantages of deep learning methods include being able to handle high di-

mensionality and being able to learn complex non-linear relationships, deep hedging

has the potential to model these relationships between market factors and derivative

prices. Deep hedging agents learn to dynamically adjust a portfolio’s hedges in re-

sponse to changing market conditions, which can make the algorithm significantly

more robust and precise compared to traditional Greek hedging methods.

The goal of deep hedging is to minimize the overall risk of a portfolio by contin-

uously adjusting the level of hedging in response to changes in market conditions.

This involves the use of various hedging instruments including options and futures to

hedge against potential large swings in the portfolio’s value by trying to minimize the

portfolio’s risk. Deep hedging moves away from the risk-neutral world, where mar-

kets are complete and there is no arbitrage, to the real-world measure. As machine

learning methods are data-driven, this framework can be applied to a wide range of

financial assets, including stocks, bonds, commodities, currencies, and crypto.

44

Reinforcement learning is an appropriate tool for the task of hedging because it can be

adapted to work with different combinations of market conditions, portfolio complex-

ities, and investment objectives. Unlike traditional optimization tasks, reinforcement

learning agents remove the need to manually solve for optimal positions by interact-

ing and learning the optimal strategy directly from a realistic market environment

through trial and error. At a high level, deep hedging uses deep neural networks to

predict the evolution of the markets and then uses this prediction to allow agents to

learn how to dynamically adjust a portfolio’s hedge positions to minimize risk.

Considering the hedging problem objective described in equation 3.2, a deep neu-

ral network can be used to represent hedging strategies and predict corresponding

rewards in the market environment. This neural network can be used to allow the

reinforcement learning agents to gradually learn the optimal hedging policy using

this policy approximation framework. The structure of the hedging strategy neural

network representation is displayed below.

Figure 3-4: Learning Hedging Policy from Market State Deep Neural Network

45

3.4.3 GAN-Based Market Environment

The flexibility of the deep hedging framework allows the algorithm to learn from any

type of market environment with any number of variables and factors. However, for

the deep hedging algorithm to be practical for institutional investors and traders, the

market environment must be as realistic and representative of real-world markets as

possible. The original deep hedging system developed by Hans Buehler et al. (2019)

was implemented under a Heston world with stochastic volatility, an improvement

upon Black-Scholes, but is still parametric and makes assumptions about market

dynamics. The authors suggest the use of a market simulator powered by machine

learning methods, which may be more appropriate to represent real market conditions.

As explored in Chapter 2, GANs can be applied to the deep hedging framework by

generating a diverse range of synthetic market scenarios that can be used to stress-test

the hedging algorithms. The synthetic data that the GAN generates has statistical

properties resembling real data. This data can help ensure that the hedging algorithm

is robust and can handle a wide range of market conditions. GANs can be used to aug-

ment the training data for the hedging algorithm by generating additional synthetic

data points that are representative of the real-world market. This can potentially

help to improve the hedging algorithm’s performance by increasing the amount and

diversity of realistic training data available.

Market environments have frequently been simulated using a model such as Black-

Scholes for the sake of simplicity and interoperability of market dynamics. In this

implementation of deep hedging, the market environment is created by using GAN-

based market simulation to capture the general properties of real markets, moving

the system into the real-world measure. This creates a non-parametric model of the

market, removing the need for making various assumptions about market dynamics.

The overall framework of multi-agent deep reinforcement learning and GAN-based

market simulation for derivatives pricing and dynamic hedging is displayed below.

46

Figure 3-5: Framework of Multi-Agent Deep Reinforcement Learning and GAN-Based
Market Simulation for Derivatives Pricing and Dynamic Hedging

3.5 Evaluating Deep Hedging Algorithms

Using machine learning methods for derivatives pricing and hedging moves away from

the risk-neutral pricing framework and does not require the assumptions and compu-

tations of a risk-neutral world. As previously mentioned, the reinforcement learning

framework of deep hedging provides flexibility as to the type of market environment

and constraints in the hedging problem. Previous works on using deep hedging meth-

ods have focused on the implementation of a Black-Scholes or Heston world. It is

demonstrated by Hans Bühler et al. [2] that deep hedging is able to converge to the

results of Black-Scholes delta in the absence of market frictions and transaction costs.

However, using Black-Scholes or Heston to simulate underlying price movements still

makes the deep hedging system model-based, as it relies on foundational assumptions

about market dynamics. Instead, it may be more appropriate to use the GAN-based

market simulator to represent the market environment.

47

3.5.1 Black-Scholes World vs. GAN-Based Simulations

The primary goal of using machine learning methods in deep hedging is to move away

from the model-based and risk-neutral world framework that requires many assump-

tions about market dynamics. Ideally, a model-free system would learn and make

decisions primarily on data instead of a model of the market, which is the purpose

of the reinforcement learning system. To realize the true potential of machine learn-

ing and deep hedging methods for practical use in real-world markets, a model-free

environment must be implemented, such as the one previously explored in Chapter

2, that does not require assumptions about how the market works. To observe the

differences in using a Black-Scholes world and a GAN-based market simulator to train

the deep hedging system, the realized hedged PnLs of the optimal hedging strategies

can be visualized for both types of market environments. Running 100,000 market

simulations with 30 time steps using both approaches yields the distribution of hedged

PnLs displayed in the histogram below.

Figure 3-6: Optimal Deep Hedging Policy PnL (Black-Scholes vs. GAN)

48

Derivative prices are sensitive to changes in the underlying asset prices. This sensi-

tivity, as described in Section 3.2.1, is referred to as the derivative’s delta. The delta,

or sensitivity to underlying price movements, of the hedged option can be visualized

as a function of the underlying price over time. One of the goals of using hedging

strategies is to reduce the portfolio’s delta exposure as much as possible so its value

is less sensitive to underlying price movements. This implies that the delta plot will

ideally be less steep to reduce the sensitivity and risk exposure. Over time as the

option nears expiration, its value becomes more sensitive to underlying price move-

ments and the delta becomes much steeper than before. The portfolio deep hedging

deltas for both the Black-Scholes and GAN-based environments are plotted below.

Figure 3-7: Deltas for Deep Hedging Over Time (Black-Scholes vs. GAN)

49

As shown in the distribution of PnLs in Figure 3-6, it appears that deep hedging has

more consistent returns using AI-generated data than Black-Scholes simulations, as

the returns are more thinly spread when trained on a GAN-based market. Further-

more, it can be seen in Figure 3-7 that using GAN-based market simulation results

in a smaller overall delta for various underlying prices. This implies that the deep

hedging algorithm was able to reduce the delta risk exposure and sensitivity to un-

derlying price movements of the portfolio using AI-generated market data instead of

a parametric Black-Scholes simulation.

To have a robust hedging strategy, the PnLs of the portfolio should have consis-

tently low volatility in different market scenarios. The volatilities of the returns for

the strategy should be relatively stable across different market simulations so that

the deep hedging agent can perform consistently and handle various market risks in

the real world. The distribution and kernel density estimate (KDE) for the volatility

of hedged returns for deep hedging on a Black-Scholes world and GAN-based market

environment for an option with strike 𝐾 = 100 are displayed below.

Figure 3-8: Histogram of Deep Hedged Return Volatility (Black-Scholes vs. GAN)

50

Return Volatility Mean Standard Deviation

Black-Scholes Market 11.72 5.75
GAN-Based Market 9.72 4.26

Table 3.2: Distribution of Deep Hedged Return Volatility (Black-Scholes vs. GAN)

Observing the results of using a Black-Scholes and a GAN-based market environment

for training deep hedging methods, it appears the latter produces a more robust hedg-

ing policy for reducing volatility against various market risks and conditions. Across

all the simulations, the hedging strategy PnLs and volatilities are more thinly spread

in the GAN-based market. The GAN is likely capturing specific properties of financial

data that cannot be modeled by parametric methods like Monte Carlo simulations.

Overall, it appears that the AI-generated data allows deep hedging agents to bet-

ter learn the market structure and make more consistent hedging decisions. Overall,

these results are promising for traders and investors to use deep hedging in the real

world to manage real market risks.

This demonstrates the practicality of using AI-generated data in training and de-

veloping machine learning methods for derivatives pricing and dynamic hedging, and

potentially for other financial applications as well. Although there is still more work

to be done in optimizing the GAN in learning the underlying market data distribution

and experimenting with different deep reinforcement learning algorithms, this proof-

of-concept framework removes the need for market assumptions by learning directly

from data. Since this system is model-free and data-driven, there is great potential

for using GANs and deep reinforcement learning to hedge risks in other asset classes

as well. The multi-agent deep reinforcement learning and GAN-based market simula-

tion system provides a flexible and scalable framework for investors to systematically

hedge a portfolio of diverse assets in a complex market with various risks, frictions,

and constraints using historical data.

51

52

Chapter 4

Potentials of Reinforcement Learning

and GANs in Finance

4.1 Identifying Statistical Arbitrage Opportunities

In Chapter 3, we explored the implementation of a GAN-enabled deep reinforcement

learning framework to price and hedge options. We can adapt this framework to find

instances of options mispricing by identifying under-valued and over-valued options

in the market and applying statistical arbitrage trading strategies.

4.1.1 Capturing Mean Reversion with GANs

An essential component of statistical arbitrage strategies is based on the mean-

reverting properties of financial time series to take advantage of price inefficiencies

and divergence. In a perfectly efficient market, it would be difficult to implement

consistent statistical arbitrage strategies because all available information is reflected

in the prices of financial instruments and there would be no price inefficiencies, as

stated by the efficient market hypothesis (EMH). Although there is a degree of mar-

ket efficiency, real markets tend not to be perfectly efficient due to various biases and

irrationality exhibited by traders. This results in various asset mispricings that can

be arbitraged by using properties such as mean reversion. Although the term statis-

53

tical arbitrage implies there is no risk to the strategy, there is actually a significant

amount of risk when deploying statistical arbitrage strategies in the real markets as

price movements are often unpredictable. In order to develop robust statistical arbi-

trage strategies, simply backtesting on historical data may not be sufficient to confirm

the strategy’s performance, as previously discussed in Chapter 1.

The risks present in traditional statistical arbitrage methods can be addressed by

using reinforcement learning and generative adversarial networks. As explored previ-

ously in Chapter 2, GANs have the ability to learn and replicate the statistical prop-

erties that empirical financial data exhibit. In the GAN-generated data, there are also

patterns of price divergences in a wide variety of market scenarios. To make statistical

arbitrage models and strategies more robust, it is possible to optimize and evaluate

those models and strategies on AI-generated data with the same mean-reverting prop-

erties as historical data [22]. Furthermore, as statistical arbitrage strategies are highly

subject to market risks such as changing market conditions, a reinforcement learning

framework can potentially improve trading strategies. Since model-free deep rein-

forcement learning, combined with GAN-based market simulation, has the ability to

quickly adapt to different market scenarios, it may be a powerful tool for learning the

optimal statistical arbitrage policy compared to statistical models.

4.1.2 Improving Pairs Trading

One popular type of statistical arbitrage strategy is pairs trading which relies on

the assumption of mean reversion between two highly-correlated assets. Often, the

difficult part of implementing a pairs trading strategy is identifying the correlated

assets to simultaneously trade. The GAN-based approach in this study primarily

focused on generating univariate financial time-series data that have similar proper-

ties to real data. However, this method can be extended to generating multi-variate

time-series data that behave similarly to real multi-variate time-series. By simulating

large amounts of time-series data of various correlated candidates, the strength of

the correlations can be evaluated. Using this approach also provides the benefit of

54

evaluating a pairs trading strategy’s robustness to different market scenarios instead

of a simple backtest on historical data, which may provide biased results.

Furthermore, there are often various financial and economic constraints in deploy-

ing trading strategies. As it may be difficult to account for these factors and large

amounts of market data using traditional methods, it may be possible to implement

reinforcement learning methods to make this framework more appropriate for real-

istic market conditions. For example, it is possible to use the described generative

AI framework to generate data in a synthetic market environment and allow a deep

reinforcement learning agent to learn the optimal policy for trade execution timing

and position sizing. This framework would allow the flexibility to include any con-

straints while trying to optimize an objective function. Furthermore, this reinforce-

ment learning-based strategy would become more robust when trained on realistic

synthetic market data.

4.2 Developing Robust Risk Modeling Frameworks

4.2.1 Stress Testing using GAN-Based Market Simulation

The ability to simulate the possibilities and consequences of extreme market condi-

tions is crucial for risk management. As the future is always unpredictable, Monte

Carlo simulations have been widely adopted for simulating possible market scenarios.

However, as previously discussed in Chapters 1 and 2, Monte Carlo simulations have

limitations in simulating and representing market data. Instead, GANs are more

capable of capturing true market dynamics by learning directly from historical mar-

ket data. A potential application of GANs in risk management practices is to use

GAN-based market simulations in stress testing and market risk assessment. GANs

could be used to generate scenarios for extreme market conditions, such as severe

stock price declines or sharp increases in interest rates. The consequences of market

crashes are often unpredictable and hard to model with simple probabilistic simula-

55

tions, but extreme market conditions can be emulated by GANs learning from, for

example, market data during the 2008 financial crisis, or the COVID-19 pandemic.

The market simulations generated by the GAN could then be used to stress test a

portfolio and see how it would perform under these market conditions.

4.2.2 Value-at-Risk using GAN-Based Approach

A commonly used risk model to assess portfolio tail risks is Value-at-Risk (VaR)

which involves implementing a confidence interval on return data to gauge return

risks. The three most common approaches to building VaR models include histor-

ical simulation, delta-normal method, and Monte Carlo simulation. However, both

delta-normal and Monte Carlo simulations are parametric methods that require the

assumption about underlying return distributions. As previously discussed in Chap-

ter 1, these parametric methods have limitations and may sometimes be inaccurate in

modeling asset returns. For example, the delta-neutral method assumes log returns

are normally distributed and estimates a normal distribution using this assumption,

and Monte Carlo simulations require assumptions about underlying price movement

dynamics. The historical simulation method makes use of past market data to build a

confidence interval. However, also previously discussed in Chapter 1, historical data

has limitations since it is scarce and doesn’t capture enough market scenarios.

The benefit of using market simulations is the wide range of market scenarios that

are generated. Instead of using traditional Monte Carlo methods, the GAN-based

market simulation proposed in Chapter 2 can be used to generate various paths of

asset returns. As the GANs are trained on historical market data and try to learn the

underlying distribution, GAN-based market simulations carry the benefits of both

the historical and Monte Carlo simulation methods. The AI-generated data will not

only resemble real market data and have similar properties, but the GAN is able to

generate an abundance of data, as shown in Figure 2-7. Augmenting traditional risk

management tools like Value-at-Risk can potentially make the models more robust

to changing market conditions and yield more precise results.

56

Chapter 5

Conclusion

5.1 Summary of Analysis

This research explores how combining artificial intelligence and machine learning

methods fueled by data can devise and improve trading and hedging strategies from

risk-neutral methods. Deep reinforcement learning is a robust method that can learn

the optimal strategy to perform various tasks given different circumstances or mar-

ket scenarios. It is the technology behind AlphaGo, the A.I. that beat the world

Go champion, and is also the backbone to many more amazing applications of A.I.

Whereas traditional methods rely on statistical models and stochastic processes to

price and hedge options, this study explores a method that relies on empirical data

and reinforcement learning algorithms to learn the optimal strategy. This data-driven

approach allows the algorithm to learn the specific data-generating process instead of

relying on many assumptions about the market and computing options greeks.

In order to train and evaluate this data-driven framework, it is necessary to have

an abundance of realistic market data available that can expose the model to various

market scenarios and evaluate its robustness to these scenarios. A popular method

for testing trading strategies is using historical market data to train a trading strategy

and evaluate its performance, known as backtesting. However, this method has many

downsides that may bias the results of the test. First, backtesting provides limited

57

data limited to the available market data recorded and the historical events that have

occurred. This limitation may not fully be able to evaluate the deep reinforcement

learning-based strategy’s robustness to new market scenarios. Second, backtesting

does not account for the market’s response to the execution of the trading strategy

being tested. Realistically, when an order is made, there may be a market response

by other traders, which is not captured in historical data. These backtesting draw-

backs can bias trading strategy evaluation results, and it may not be the case that

the strategy will perform well in the future.

To address this issue, the first part of this research explores and implements a system-

atic data-driven approach to generate realistic synthetic market data from historical

data. This method utilizes generative adversarial networks (GANs) to perform ad-

versarial learning to generate new data that looks exactly like real data. This consists

of two agents — a generator and a discriminator. The generator takes as input real

historical market data and generates new fake data. The discriminator tries to distin-

guish the generator’s output from the real data. Eventually, the generator can learn

how to trick the discriminator by generating new realistic market data that can be

used for training and testing trading strategies.

The second part of the research focuses on integrating the first part of deep hedg-

ing and deep reinforcement learning algorithms with the second part of GAN-based

market simulations. The synthetically generated market data is used to train the

algorithms by exposing them to a wide variety of market scenarios, representative

of those that occurred in the past, as well as those that may occur in the future

given the right circumstances. This will improve the robustness of the algorithm

by allowing it to learn to adapt to different economic circumstances. The results of

this GAN-based deep reinforcement learning framework are compared to traditional

models like the Black-Scholes model. We conclude by discussing the efficacy of this

systematic approach to developing and testing various data-driven trading strategies

through machine learning approaches.

58

5.2 Results and Discussion

The goal of this study is to explore data-driven machine learning methods that can

outperform traditional statistical methods in simulating market data and devising

hedging strategies. In Chapter 2, the statistical properties and attributes of GAN-

generated time-series market data closely matched those of real market data relative

to a parametric Monte Carlo simulation. Based on the similarity of GAN-generated

data to real market data relative to Monte Carlo methods, it may be appropriate

to use GANs for market simulation purposes. Subsequently, in Chapter 3, deep

reinforcement learning methods were explored to price and hedge derivatives in the

GAN-based market environment. Based on the distribution of PnLs and volatilities of

hedged returns in the two types of market environments, it seems that GANs are able

to produce more robust deep hedging agents in solving the hedging problem. There

is more work to be done in improving and optimizing these methods into a fully

deployable system, but the preliminary results are promising and show the efficacy of

this framework in a practical market setting.

5.3 Future Work

This study has primarily focused on developing a systematic proof-of-concept frame-

work to use GAN-generated data to train deep reinforcement learning methods. There

is more work to be done for optimizing these methods to produce more precise and

robust results and ultimately become deployable in a live trading environment. For

example, overfitting is an issue that plagues all forms of machine learning, including

the methods explored in this research. GANs can potentially overfit if the generator

learns to memorize the market data instead of learning the underlying distribution.

RL agents can also overfit by memorizing a specific market environment instead of

learning a generalizable hedging policy. Overfitting can cause the system to break

when market conditions change, which they often do. Optimizing the system to mit-

igate overfitting includes hyperparameter tuning, regularization, and other methods.

59

As GANs consist of deep neural networks, they can learn the complexities of high-

dimensional data despite overfitting problems. It is possible to use GANs to simulate

multivariate time series data, which appears very frequently in the context of finance.

For example, GANs can learn the underlying dynamics of the market microstructure

by being trained directly on historical order book data. This makes it possible to train

a GAN to generate multi-dimensional time-series data of bid-ask prices. Furthermore,

GANs can also handle high-frequency data and can perhaps learn the patterns and

dynamics of high-frequency price movements and mimic that behavior in the data it

generates. These applications have significant potential for market makers to develop

and enhance robust automated trading strategies and market-making algorithms.

The deep hedging framework explored in this study is flexible and robust compared to

traditional risk-neutral pricing and hedging methods. Whereas classic options pric-

ing models represent a market with underlying returns following a specific stochastic

process, the deep hedging framework can be applied to any sort of market model.

Therefore, any type of asset and derivative, along with realistic market conditions

such as transaction costs, liquidity risks, and other financial constraints, can be mod-

eled using deep hedging to find the optimal pricing and hedging policy. This study

primarily focused on the application to equity markets but can be adjusted to develop

hedging strategies in currencies, commodities, fixed income, crypto, etc.

Neural networks and artificial intelligence are known for their black box-like fea-

tures since many of their predictions are not explainable. This concept applies to

GANs and deep reinforcement learning methods in general as well. However, in-

terpretability can potentially reveal useful information about the factors driving the

decisions and outputs of GANs and reinforcement learning agents. In the context

of GANs, using explainability methods such as activation maps on the generator

and discriminator networks can reveal the properties of financial data that the GAN

looks at when discriminating and generating new data. This can potentially reveal

60

some unique properties that are generally exhibited by stock returns. Furthermore,

in the context of reinforcement learning, using explainability methods can reveal the

decision-making process of the deep hedging agent and the factors contributing to

its hedging policy. This can potentially reveal the most important market factors

and conditions contributing to the hedging decisions made by the agent. Both of

these insights may be valuable to traders and investors for analyzing the market and

improving investment strategies.

5.4 Final Thoughts

This study explores how GANs can be used as an alternative non-parametric ap-

proach to simulate and generate market data as opposed to traditional parametric

approaches such as Monte Carlo methods that rely on assumptions about underly-

ing distributions. The systematic market simulation framework is used to train deep

hedging agents to find the optimal options pricing and hedging policy. Deep reinforce-

ment learning combined with GAN-based market simulations makes dynamic hedging

strategies more robust and precise compared to traditional hedging techniques.

This study describes just one application of using generative AI to implement and

improve other artificial intelligence tools used in solving financial problems. However,

there are many more potential applications of these tools to be used in solving other

problems in finance. Traditional methods have generally been adopted and practiced

due to their simplicity. The increasing access to computing power and the growing

abilities of artificial intelligence have enabled machine learning methods to become

more accurate and robust, significantly outperforming traditional methods. As AI

becomes an increasingly popular research topic among financial services firms, I am

excited to see the future growth and applications of AI in the financial industry.

61

62

Bibliography

[1] Fischer Black and Myron Scholes. The Pricing of Options and Corporate Liabil-
ities. Journal of Political Economy, 81:637–654, 1973.

[2] Hans Bühler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep Hedging.
Quantitative Finance, 19(8):1271–1291, 2019.

[3] Steven Heston. A Closed-Form Solution for Options with Stochastic Volatility
with Applications to Bond and Currency Options. The Review of Financial
Studies, 6(2):327–343, 1993.

[4] Igor Halperin. QLBS: Q-Learner in the Black-Scholes(-Merton) Worlds. arXiv
preprint, 2017.

[5] James M Hutchinson, Andrew W Lo, and Tomaso Poggio. A Nonparametric
Approach to Pricing and Hedging Derivative Securities Via Learning Networks.
The Journal of Finance, 49:851–889, 1994.

[6] Petter Kolm and Ritter Gordon. Dynamic Replication and Hedging: A Reinforce-
ment Learning Approach. The Journal of Financial Data Science, 1(1):159–171,
2019.

[7] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Networks. arXiv preprint, 2014.

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative
Adversarial Networks. Proceedings of the 34th International Conference on Ma-
chine Learning, PMLR 70:214–223, 2017.

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. Improved Training of Wasserstein GANs. arXiv preprint, 2017.

[10] Olof Mogren. C-RNN-GAN: Continuous recurrent neural networks with adver-
sarial training. arXiv preprint, 2016.

[11] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series Genera-
tive Adversarial Networks. NeurIPS Proceedings, 2019.

63

[12] Mohammad Diqi, Marselina Endah Hiswati, and Adri Saputra Nur. StockGAN:
robust stock price prediction using GAN algorithm. International Journal of
Information Technology, 14:2309–2315, 2022.

[13] Magnus Wiese, Lianjun Bai, Ben Wood, and Hans Buehler. Deep Hedging:
Learning to Simulate Equity Option Markets. arXiv preprint, 2019.

[14] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr.
Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh –
A Python package). Neurocomputing, 307:72–77, 2018.

[15] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(86):2579–2605, 2008.

[16] Hans Bühler, Baranidharan Mohan, and Ben Wood. Deep Hedging: from Theory
to Practice, 2019.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. arXiv preprint, 2013.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. arXiv preprint, 2017.

[19] Jiayi Du, Muyang Jin, Petter Kolm, Gordon Ritter, Yixuan Wang, and Bofei
Zhang. Deep Reinforcement Learning for Option Replication and Hedging. The
Journal of Financial Data Science, 2(4):44–57, 2020.

[20] Victor Storchan, Svitlana Vyetrenko, and Tucker Balch. MAS-GAN: Adversarial
Calibration of Multi-Agent Market Simulators. 2020.

[21] Jay Cao, Jacky Chen, John Hull, and Zissis Poulos. Deep Hedging of Derivatives
Using Reinforcement Learning. The Journal of Financial Data Science, 3(1):10–
27, 2021.

[22] Hans Bühler, Phillip Murray, Mikko S. Pakkanen, and Ben Wood. Deep hedging:
learning to remove the drift. risk.net, 2022.

64

	Introduction
	Background of Derivatives Pricing Methods
	Research Motivation
	Market Assumptions
	Limitations of Historical Financial Data

	Objective
	Related Works

	Generative Adversarial Networks for Market Data Generation
	Overview of Generative Adversarial Networks
	Vanilla GAN (VGAN)
	Wasserstein GAN (WGAN)
	Other Forms of GANs

	Using GANs for Synthetic Data Generation
	Simulating Financial Market Data with GANs

	Evaluating GAN-Based Market Simulations
	Time-Series Distributional Statistics & Metrics
	t-SNE Comparison

	Deep Reinforcement Learning for Derivatives Pricing and Hedging
	Motivations
	Derivatives Pricing Models
	The Greeks
	Dynamic Greek Hedging

	Overview of Deep Reinforcement Learning
	Model-Based vs. Model-Free
	Multi-Agent Reinforcement Learning

	Deep Hedging
	The Hedging Problem
	Applying Deep Reinforcement Learning to Hedging
	GAN-Based Market Environment

	Evaluating Deep Hedging Algorithms
	Black-Scholes World vs. GAN-Based Simulations

	Potentials of Reinforcement Learning and GANs in Finance
	Identifying Statistical Arbitrage Opportunities
	Capturing Mean Reversion with GANs
	Improving Pairs Trading

	Developing Robust Risk Modeling Frameworks
	Stress Testing using GAN-Based Market Simulation
	Value-at-Risk using GAN-Based Approach

	Conclusion
	Summary of Analysis
	Results and Discussion
	Future Work
	Final Thoughts

